Pengukuran Sudut
Berdasarkan gambar di atas dapat kita simpulkan bahwa pengukuran sudut merupakan salah satu aspek penting dalam pengukuran dan pemetaan kerangka maupun titik-titik detail.Sistem besaran sudut yang dipakai juga berbeda antara satu dengan yang lainnya. Sistem besaran sudut pada pengukuran dan pemetaan dapat terdiri dari:
- Sistem Besaran Sudut Seksagesimal
- Sistem Besaran Sudut Sentisimal
- Sistem Sesaran Sudut Radian
Dasar untuk mengukur besaran sudutnya seperti suatu lingkaran yang dibagi menjadi empat bagian, yang dinamakan kuadran yaitu Kudran I, II, III dan kuadran IV.
Untuk cara sexagesimal lingkaran dapat dibagi menjadi 360 bagian yang sama dan tiap bagiannya disebut derajat. Maka 1 kuadran dalam lingkaran tersebut = 900.
1o = 60’ 1’ = 60” 1o = 3600”
Perbandingan Trigonometri Pada Segitiga Siku – Siku
Untuk definisi perbandingan trigonometri sudut siku-siku pertama adalah:
Dan untuk definisi perbandingan trigonometri sudut siku-siku kedua, adalah:
Nilai Perbandingan Trigonometri Untuk Sudut – Sudut Istimewa
Nilai perbandingan memiliki beberapa tabel yang akan memudahkan kamu untuk menemukan hasilnya. Tabel itu sendiri memiliki 2 jenis tabel Istimewa. Ada apa saja? Yuk, perhatikan tabel di bawah ini:
Tabel perbandingan trigonometri sudut istimewa pertama
Tabel perbandingan trigonometri sudut istimewa kedua
Perbandingan Sudut dan Sudut Relasi Trinogometri I
Perbandingan sudut dan relasi trigonometri merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi sudut kuadran I dan sudut lancip (0 − 90°). Untuk contohnya kamu bisa perhatikan gambar di bawah ini ya!
Perbandingan Sudut dan Sudut Relasi Trigonometri II
Untuk setiap α lancip, maka (90° + α) dan (180° − α) akan menghasilkan sudut kuadran II. Dalam trigonometri, relasi sudut-sudut tersebut dinyatakan sebagai berikut:
Identitas Trigonometri
Identitas trigonometri adalah kesamaan yang memuat perbandingan trigonometri dari suatu sudut. Sebuah identitas trigonometri dapat ditunjukkan kebenarannya dengan tiga cara. Cara pertama, dimulai dengan menyederhanakan ruas kiri menggunakan identitas sebelumnya sampai menjadi bentuk yang sama dengan ruas kanan. Cara kedua, mengubah dan menyederhanakan ruas kanan sampai menjadi bentuk yang sama dengan ruas kiri. Cara ketiga, mengubah baik ruas kiri maupun ruas kanan ke dalam bentuk yang sama.
Ada beberapa rumus identitas trigonometri yang perlu kamu ketahui seperti:
Nah, seperti itulah bentuk dari teori Trigonometri. Pelajari dan pahami teori ini, karena teori ini tidaklah mudah. Selamat belajar ya guys.
No comments:
Post a Comment